
Introduction

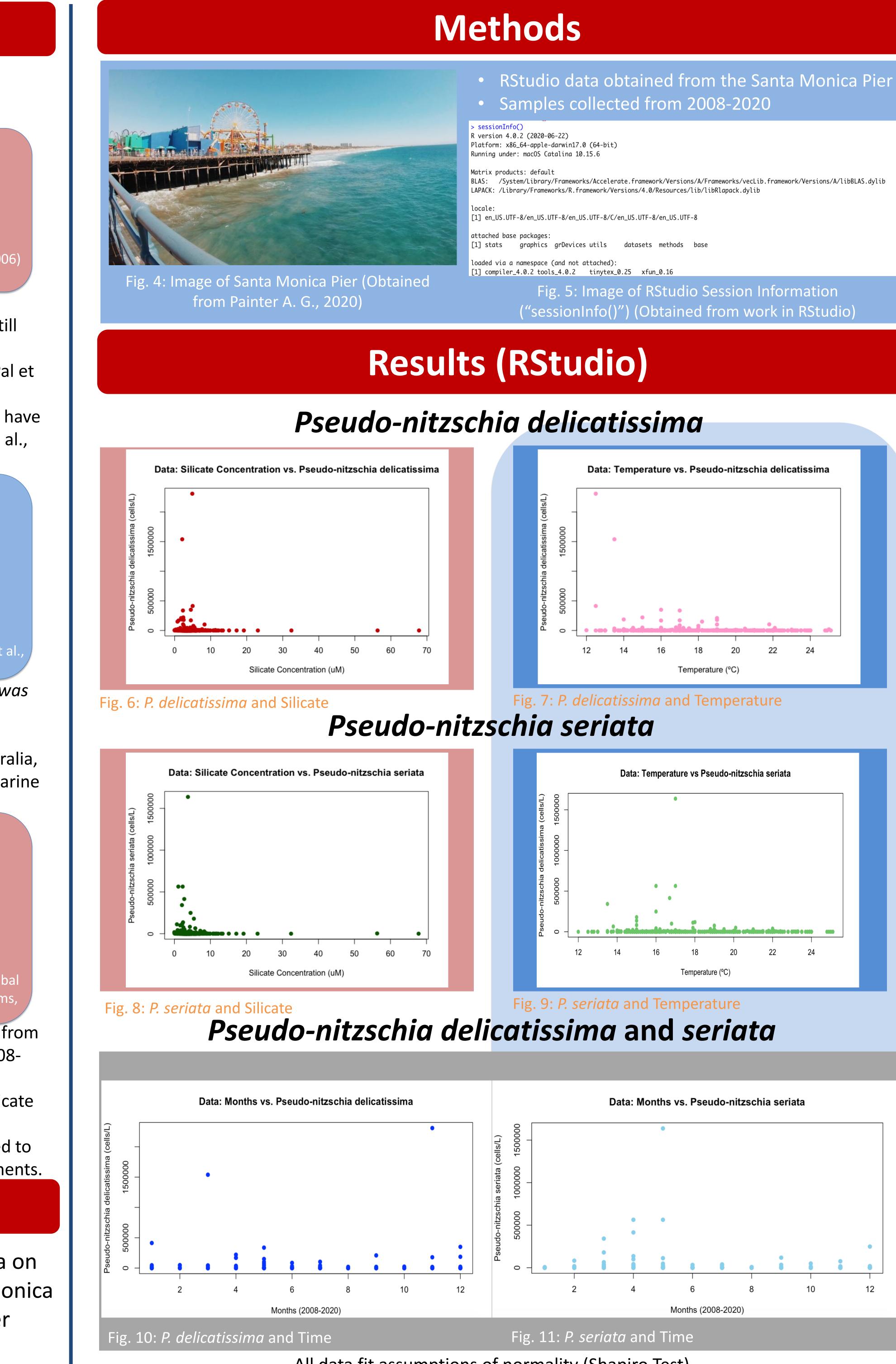
Though microscopic, *Pseudo-nitzschia* is one of many phytoplankton capable of destroying entire ecosystems and economies.

and *Pseudo-nitzschia seriata* below(Obtained from Hasle et al., 2005)

With a suitable environment—usually consisting of adequate nutrients (nitrogen, phosphorus, silica) and light, warm and still water, little wind, and low salinity—Phytoplankton such as Pseudo-nitzschia can become a Harmful Algal Bloom (HAB) (Pal et al., 2020). Through a process known as eutrophication, phytoplankton can accumulate into numbers large enough to have adverse effects on local organisms including humans (Dhar et al., 2015 & Pal et al., 2020).

ig. 2: Factors that usually contribute to HAB formation (Obtained from Pal et al

- For the intents and purposes of this poster, *Pseudo-nitzschia was* analyzed based on the following HAB factors: silicate concentrations, water temperature, and time of year.
- Present in coastal waters of North America, Europe, and Australia, *Pseudo-nitzschia* has established itself as a global threat to marine biomes everywhere (Dhar et al., 2015).


ig. 3: Global view of paralytic shellfish poisoning (PSP) corresponding to globa umber of HABs (Obtained from U.S. National Office for Harmful Algal Blooms,

- Data retrieved from Santa Monica Pier in Southern California from the CalHABMAP - Santa Monica Pier HAB data repository (2008-2020).
- Overall, *Pseudo-nitzschia's relationship to* HAB factors (i.e. silicate levels, water temperatures, and time of year) is an area demanding more examination. Hence, this study was designed to compile and analyze data on *Pseudo-nitzschia* and these elements.

Objective

To investigate, compile, and analyze current data on *Pseudo-nitzschia* and field work from the Santa Monica Pier in relation to silicate concentration, water temperature, and time of year.

Investigation of Annual Cycling of *Pseudo-nitzschia* in relation to Silicate **Concentrations, Water Temperature, and Time of Year** Alex Matos and Dr. Amber Bratcher-Covino Biology Department | Loyola Marymount University | Los Angeles, CA 90045

All data fit assumptions of normality (Shapiro Test)

- p<0.006).
- opportunities.

- distribution
- closed/2386258/

I would like to thank Dr. Bratcher, the Coastal Research Institute, SCCOOS, ERDDAP, and Seaver College of Science and Engineering at LMU

Discussion

Overall, this experiment was designed to investigate, compile, and analyze current data on *Pseudo-nitzschia* and field work from the Santa Monica Pier in relation to silicate levels, water temperature, and time of year. There appears to be a relationship between *P. delicatissima* and silicate concentrations; there are noticeable measurement overlaps in elevated P. *delicatissima* population at silicate levels between 0-10 uM (Fig. 6). Similarly, comparisons between temperature and *P. delicatissima* revealed periodic population spikes in somewhat of a bell curve at 1°C intervals; specifically, between 14^o-19^oC, suggesting lower temperatures in the Santa Monica Bay allow for increased *P. delicatissima* growth (Fig. 7). Moving on to *Pseudo-nitzschia seriata*, analysis of Fig. 8 revealed *P*. seriata—much like P. delicatissima--responded well to lower silicate concentrations. Although there seem to be some outliers at higher silicate levels, the majority of *P. seriata's* cells per liter seem to gravitate towards levels near 0-10 uM. Furthermore, comparisons between *P. seriata* and temperature shows a slight preference for temperatures ranging from 13^o-19°C. Meaning, in the Santa Monica Area, P. seriata, like P. delicatissima, functions better at lower-ranging water temperatures.

The relationship between *P. delicatissima* and *P. seriata* with regards to silicate levels and temperature and are statistically significant (ANOVA,

Comparing the monthly numbers of *P. delicatissima* and *P. seriata* there seems to be an overall trend of increased numbers in the months of April-May (fig. 8 and 9). Additionally both figures exhibit sporadic smaller-scale spikes near the months of September and December.

In context, the monthly population flux of *P. delicatissima* and *P. seriata* in Southern California remains relatively under analyzed in academia; thus, this data could be used to inform future research decisions, management

On a grander scale, this data and its conclusions should not come as a surprise as HAB research is slowly picking up national attention; however, given the gaps in knowledge (relationship between time and *Pseudonitzschia*), this research should be used as a gateway and foundation for further research studying *Pseudo-nitzschia* in Southern California.

Literature Cited

• Reid, C., Kaczmarska, I., Martin, J. L., & Moniz, M. B. J. (2008). Morphological, Biological, and Molecular characteristics of the diatom Pseudo-nitzschia delicatissima from the Canadian Maritimes. Botany, 86(7), 763–772. https://doi-org.electra.lmu.edu/10.1139/B08-046 • Grethe Rytter Hasle & Nina Lundholm. (2005). Pseudo-nitzschia seriata f. obtusa (Bacillariophyceae) raised in rank based on morphological, phylogenetic and distributional data. Phycologia. 44(6), 608-619, DOI: 10.2216/0031-8884(2005)44[608:PSFOBR]2.0.CO;2 • Pal, M., Yesankar, P. J., Dwivedi, A., & Qureshi, A. (2020). Biotic control of harmful algal blooms (HABs): A brief review. Journal of Environmental Management, 268, 110687. https://doi-org.electra.lmu.edu/10.1016/j.jenvman.2020.110687

Bidhan Chandra Dhar, Lucia Cimarelli, Kumar Saurabh Singh, Letizia Brandi, Anna Brandi, Camilla Puccinelli, Stefania Marcheggiani, & Roberto Spurio. (2015). Molecular Detection of a Potentially Toxic Diatom Species. International Journal of Environmental Research and Public Health, 12(5), 4921–4941. https://doi-org.electra.lmu.edu/10.3390/ijerph120504921 • U.S. National Office for Harmful Algal Blooms. (2016). Distribution of HABs throughout the World. Retrieved August 27, 2020, from https://hab.whoi.edu/maps/regions-world-

• Painter, A. G. (2020, June 25). Santa Monica Pier Reopens, Though Rides Are Closed. National Broadcasting Company. Retrieved September 06, 2020, from https://www.nbclosangeles.com/the-scene/santa-monica-pier-reopens-though-rides-are-

Acknowledgements